Efficient Chebyshev polynomial approach to quantum conductance calculations: Application to twisted bilayer graphene

نویسندگان

چکیده

In recent years, Chebyshev polynomial expansions of tight-binding Green's functions have been successfully applied to the study a wide range spectral and transport properties materials. However, application approach quantum noninteracting mesoscopic systems with leads has hampered by lack suitable expansion Landaeur's formula or one its equivalent formulations in terms Keldysh's perturbation theory. Here, we tackle this issue means hybrid that combines efficiency convenience complex absorbing potentials calculate conductance two-terminal devices computationally expedient accurate fashion. The versatility is demonstrated for twisted bilayer graphene (TBG) up $2.3\ifmmode\times\else\texttimes\fi{}{10}^{6}$ atomic sites. Our results highlight importance moir\'e effects, interlayer scattering events, twist-angle disorder determining curves small twist angle near TBG magic ${\ensuremath{\theta}}_{m}\ensuremath{\approx}1.{1}^{\ensuremath{\circ}}$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Hall effect in twisted bilayer graphene.

We address the quantum Hall behavior in twisted bilayer graphene transferred from the C face of SiC. The measured Hall conductivity exhibits the same plateau values as for a commensurate Bernal bilayer. This implies that the eightfold degeneracy of the zero energy mode is topologically protected despite rotational disorder as recently predicted. In addition, an anomaly appears. The densities at...

متن کامل

Superlensing with twisted bilayer graphene

The charge susceptibility of twisted bilayer graphene is investigated in the Dirac cone, respectively, randomphase approximation. For small enough twist angles θ ≲ 2° , we find genuine interband plasmons, i.e., collective excitonic modes that exist in the undoped material with an almost constant energy dispersion. In this regime, the loss function can be described as a Fano resonance, and we ar...

متن کامل

Phonons in twisted bilayer graphene

Alexandr I. Cocemasov,1 Denis L. Nika,1,2,* and Alexander A. Balandin2,3,† 1E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, Chisinau, MD-2009, Republic of Moldova 2Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California ...

متن کامل

Quantum Hall effect in graphene with twisted bilayer stripe defects

Tomas Löfwander,1 Pablo San-Jose,2 and Elsa Prada3 1Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden 2Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain 3Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain (Received 3 December 2012; revised manuscript received 3 May 2...

متن کامل

Broken-Symmetry Quantum Hall States in Twisted Bilayer Graphene

Twisted bilayer graphene offers a unique bilayer two-dimensional-electron system where the layer separation is only in sub-nanometer scale. Unlike Bernal-stacked bilayer, the layer degree of freedom is disentangled from spin and valley, providing eight-fold degeneracy in the low energy states. We have investigated broken-symmetry quantum Hall (QH) states and their transitions due to the interpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2023

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.107.045418